Exploiting Satellite-Based Surface Soil Moisture for Flood Forecasting in the Mediterranean Area: State Update Versus Rainfall Correction
نویسندگان
چکیده
Many satellite soil moisture products are today globally available in near real-time. These observations are of paramount importance for enhancing the understanding of the hydrological cycle and particularly useful for flood forecasting purposes. In recent decades, several studies assimilated satellite soil moisture observations into rainfall-runoff models to improve their flood forecasting skills. The rationale is that a better representation of the catchment states leads to a better stream flow estimation. By exploiting the strong physical connection between the soil moisture dynamic and rainfall, some recent studies demonstrated that satellite soil moisture observations can be also used for enhancing the quality of rainfall observations. Given that the quality of the rainfall is one of the main drivers of the hydrological model uncertainty, this begs the question—to what extent updating soil moisture states leads to better flood forecasting skills than correcting rainfall forcing? In this study, we try to answer this question by using rainfall-runoff observations from 10 catchments throughout the Mediterranean area and a continuous rainfall-runoff model—MISDc—forced with reanalysisand satellite-based rainfall observations. Satellite soil moisture retrievals from the Advanced SCATterometer (ASCAT) are either assimilated into MISDc model via the Ensemble Kalman filter to update model states or, alternatively, used to correct rainfall observations derived from a reanalysis and a satellite-based product through the integration with soil moisture-based rainfall estimates. 4–9 years (depending on the catchment) of stream flow observations are organized into calibration and validation periods to test the two different schemes. Results show that the rainfall correction is favourable if the target is the predictions of high flows while for low flows there is a small advantage of the state correction scheme with respect to the rainfall correction. The improvements for high flows are particularly large when the quality of the rainfall is relatively poor with important implications for large-scale flood forecasting in the Mediterranean area.
منابع مشابه
Towards an increased performance of flood forecasting through assimilation of remotely sensed soil saturation levels in conceptual rainfall-runoff models
* Corresponding author ** This study is supported by the ‘Ministère Luxembourgeois de la Culture, de l’Enseignement Supérieur et de la Recherche’ and the French Space Agency (CNES) Abstract –Owing to the non-linearity of the rainfallinfiltration-runoff relationship, soil water content in the river basin represents a key parameter to be monitored for flood management purposes. Remote sensing obs...
متن کاملUsing GPS multipath to measure soil moisture fluctuations: initial results
Measurements of soil moisture are important for studies of climate and weather forecasting, flood prediction, and aquifer recharge studies. Although soil moisture measurement networks exist, most are sparsely distributed and lack standardized instrumentation. Measurements of soil moisture from satellites have extremely large spatial footprints (40–60 km). A methodology is described here that us...
متن کاملImproving Landslide Forecasting Using ASCAT-Derived Soil Moisture Data: A Case Study of the Torgiovannetto Landslide in Central Italy
Predicting the spatial and temporal occurrence of rainfall triggered landslides represents an important scientific and operational issue due to the high threat that they pose to human life and property. This study investigates the relationship between rainfall, soil moisture conditions and landslide movement by using recorded movements of a rock slope located in central Italy, the Torgiovannett...
متن کاملApplicability of Multi-Frequency Passive Microwave Observations and Data Assimilation Methods for Improving NumericalWeather Forecasting in Niger, Africa
The development of satellite-based forecasting systems is one of the few affordable solutions for developing regions (e.g., West Africa) that cannot afford ground-based observation networks. Although low-frequency passive microwave data have been used extensively for land surface monitoring, the use of high-frequency passive microwave data that contain cloud information is very limited over lan...
متن کاملThree-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: Simplified Kalman filter covariance forecasting and field application
[1] The Kalman filter data assimilation technique is applied to a distributed threedimensional soil moisture model for retrieval of the soil moisture profile in a 6 ha catchment using near-surface soil moisture measurements. A simplified Kalman filter covariance forecasting methodology is developed based on forecasting of the state correlations and imposed state variances. This covariance forec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018